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The motion of a Lagrange top, whose suspension point performs high-frequency vertical harmonic oscillations of small amplitude,
is considered. The angular velocities of the natural rotation of the top and of the rotation of its axis of symmetry around the
vertical are assumed to be small. It is well known that, in the case of a classical Lagrange top with a fixed suspension point, for
any values of the parameiers of the problem (the values of the constants of cyclical integrals) there is a unique regular precession
of the top. When the suspension point vibrates the following result is established, which has no analogues in the classical problem:
regions are distinguished in the plane of those parameters in which, for any position of the centre of gravity of the top on the
axis of symmetry, there is a unique periodic motion of the top (with a period equal to the period of oscillations of the suspension
point), close to regular precession, and also regions in which, depending on the position of the centre of gravity, there can be
one or three such motions. A rigorous solution of the problem of the stability of these motions of the top is given using the
methods of the KAM theory. © 2000 Elsevier Science Ltd. All rights reserved.

This paper is a development of the results obtained in [1], where the problem of the periodic motions
of a spherical pendulum with a vibrating suspension point is solved with assumptions similar to those
used here.

A number of investigations have been devoted to different aspects of the problem of the dynamics
of a rigid symmetrical body with a vibrating suspension point: the motion of a rapidly rotating symmetrical
and close to symmetrical gyroscope when there are vertical vibrations of the suspension point has been
investigated in [2, 3], the behaviour of a Lagrange top when the suspension point performs harmonic
oscillations in a horizontal plane was considered in [4], the motion of a viscoelastic rigid body with a
moving base was investigated in [5], and the rotation of a Lagrange top when there are random
oscillations of the point of support was considered in [6).

1. FORMULATION OF THE PROBLEM. CONVERSION OF THE
HAMILTON FUNCTION

Consider a dynamic symmetrical rigid body moving in a uniform gravity field around a fixed point
O. Suppose the centre of mass of the body lies on its dynamic-symmetry axis. This rigid body is called
a Lagrange top; its motion was investigated in detail in [7-9].

We will assume that the point O executes vertical motion in accordance with the law 0.0 = (T
about a certain fixed point O. Suppose OXYZ is a system of coordinates moving translationally in absolute
space (the OZ axis is directed vertically upwards) and Oxyz is a system of coordinates, rigidly attached
to the body, whose axes coincide with the principal axes of inertia of the body for the point O, where
the Oz axis is directed along the dynamic-symmetry axis, and the centre of mass G of the body lies on
the positive semiaxis 0z(OG = zg, zg > 0). We will specify the orientation of the system of coordinates
Oxyz with respect to OXYZ using the Euler angles.

The kinetic energy of the body is given by the expression

1 1
T:Emvzo+mvo-vcml +—2—[A(p2+q2)+Cr2] (1.1)
where m is the mass of the body, 4 and C arg the equatorial and axial moments of inertia respectively,
v, is the velocity of the point O, vg,; = @ X OG is the velocity of the point G in the system of coordinates
OXYZ, and o is the vector of the absolute angular velocity of rotation of the body, having projections

P> q and r in the attached system of coordinates.
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In projections onto the Oxyz axes we have 0G= (0,0, 26)7, Vore = (g26, - PZa, 0)7, vo = &n, where
n = (sin © sin @, sin 6, cos ¢, cos 8)” is the unit vector of the vertical axis OZ.

From (1.1) and Euler’s kinematic equations we have the following expression for the kinetic energy
of the body

T= %me‘;2 —sz&ésine+%A(¢2 sin? 9+92)+%C(1j1c056+(p)2 (1.2)

The potential energy of the body can be calculated from the formula
IT = mgz; cos 0 + mg&(r) (1.3)

It follows from (1.2) and (1.3) that the coordinates y and ¢ are cyclical, and the momenta corres-
ponding to them are the same as in the case of the motion of a Lagrange top with a fixed point O

Py = AVsin® 8+ C(\ cos8 + ¢)cos 6 (1.4)
Py = C(ycosO + @)

We will introduce the notation p, = Aa, p, = Ab for the constant quantities p,, and p, (Where a and
b are constants). We then have from (1.4)

. a—bcosB . A (a—bcosB)cosO
= ¢==b-—
sin“ 0 C sin“ 0

(1.5)

The momentum pg, corresponding to the positional coordinate 6, depends on the motion of the point
O and given by the equation

Po = Aé—sz&sinG (1.6)

From (1.2), (1.3), (1.5) and (1.6) we obtain the following expression for the Hamilton function (un-
important terms which are functions of time or are constant are omitted)

A(a=bcos8)?  (pg +mzsEsing)?
H= oCost) 4
2sin” 6 2A

+ mgzg cosB (1.7)

The Hamiltonian (1.7) corresponds to a system with one degree of freedom with generalized
coordinate 6.

We will further assume that &(f) = a~ cos €¥. We will introduce the dimensionless time T = € and
dimensionless parameters of the problem and the momentum py by the formulae a = Qa’, b = Qb
Po = AQpg. Hamiltonian (1.7) can then be rewritten in the form

' 2
H,_(a b’ cos0) 1

7 nZ6 +-2—(pé—csin‘csin6)2+dcose, (1.8)

where

c=T%6% 4 _M8G (.50 4>0)

A AQ?

We will further assume that: (1) the amplitude a~ of the vibrations of the point O is small compared
with the characteristic dimension of the body, (2) the natural frequency V(g/l) (! = A/(mz) is the reduced
length) of small oscillations of the body as a physical pendulum (when 4’ = b" = 0) in the neighbourhood
of stable equilibrium 6 = = is much less than the frequency € of the vibrations of the point O, and (3)
the quantities a’ and b’, representing the angular velocities of natural rotation of the body ¢ and the
rotation of its axis of symmetry around the vertical y, are small. Taking these assumptions into account,
we have that

c=a,/l=¢> (0<e<l), d=g/(Q)=¢e* (y>0), o' =¢’0, b'=€’B

The parameters o and B can be taken to be arbitrary quantities. We will further assume that
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o # P2 The case o = B’ when the axis of symmetry of the top can occupy the vertical position
(6 = 0 or 8 = m) requires a special consideration.
Making the change of variables 6, py — x, X in the Hamiltonian (1.8) using the formulae 6 = x,
Po — X, we can rewrite it, taking the notation employed into account, in the form
’ 1 2
Hy=0, H, =%X2, H, =-2XsinTsin x

2

: . o —-Pcosx

Hz=3[snn2131n2x+2ycosx+—( PZ ) j|
- sin” x

We will further carry out the canonical transformation x, X — g, p, 2rn-periodic with respect to 1, such
that the new Hamilton function does not contain the time 1 in terms up to the third order inclusive in
€. We obtain its transformation using the Depry-Hori method [10].

The new Hamiltonian K(q, p, T). must have the following structure

K = K, +¢€K, +—21;82K2+%e3K3 +0(e*) (1.10)

where K, = 0 and the functions K, K; and Kj are found from the relation [10]
K,=H,-oW /ot, Ky=Hy+LH+K A —-oW,/ot
Ky=Hy+ LiH) +2L,)H, + 2K, , + Kp ; —0W,; /ot
Here L; = (f, W) is the Poisson bracket of the functions fand W, K; | = LK, Ky, = L 1K, K5, 1 =

L,K; — LK, ;, while the functions W(q, p, T) (i = 1, 2, 3) are chosen so that the quantities K; (i = 1, 2,
3) do not contain 7. Calculations show that

W, =0, W,=2pcostsing, W3=—%sin2rsin2q—6p25in‘ccosq_

_ 2
KI =lp2, K2=07 K3=§sin2q+6,Ycosq+i(g__:E_2M (111)
2 2 sin“ g

Simultaneously with the transformation of the Hamiltonian, we shall seek a corresponding canonical

replacement of variables having the form

1 1
x=g+eqV +—e2g® + —¥¢® + 0(e*)

2! 3t

1 1
X= p+£p(])+2 g’ p(2)+3 e2p® + 0(e*)

The functions ¢¥(g, p, T) and Ug,p,7) (i =1,2, 3) are obtained using the formulae of the Depry-Hori
method [10] (which are not derived here) using the expressions for W; (i = 1, 2, 3) from (1.11). These
functions have the form

gP=0, ¢@=2costsing, ¢¥=-12psintcosq
pP =0, p®=-2pcostcosq, p® =-0.75sin21tsin2g—6p?sinTsing

After substituting the functions K; from (1.11) into (1.10) we make one more canonical univalent
replacement of variables g, p — u, v, given by the formulae u = cos g, p = —v sin g, which reduce (1.1)
to algebraic form. We have

K=¢ev2(1-u®)/2+&Iw)+0E")
(a_Bu)Z (1.12)

R (0.~ Pu)”
l'I(u)—4(1 u)+Yu+ 2(1-—u2)



744 O. V. Kholostova

The equations of motion corresponding to (1.12) have the form

du oK dv oK (1.13)

dt v’ dv ou

2. THE APPROXIMATE SYSTEM AND ITS EQUILIBRIUM POSITIONS

If we neglect terms O(e*), the following autonomous system of differential equations will correspond
to the truncated Hamiltonian obtained

du 5, du 2 3dll
_ = — , ——= — g — .
dt evl-u’) dt euv du @1)

We will obtain the equilibrium positions of approximate system (2.1). Sinceu # +1, in the equilibrium
position v = 0, and the quantity u satisfies the relation dI1/du = 0, where dll/du = f(u) — u/2 + yand

) = (o0~ Pu)(ow — BY(1 —u?) ™2

The equation
1
f(u) = 5 u-—-vy (22)

which the equilibrium values of u satisfy, will be investigated graphically in the interval (-1, 1); its roots
will be the abscissae of the points of intersection of the curve y = f(u) and the straight line y = u/2 -

" As an analysis shows, the function y = f(u) increases monotonically in the interval (-1, 1) for any
admissible values of a and B. Its derivative
(@? +BH)(1 +3u?) - 20Bu3 +u*)
(1-u?)’

frw)= (2.3)

has a minimum at u = u., which is the root of the equation f’(u) = 0, where

_612(0 +BHu(1 + u?) — of(1+6u” +u*)]
- (1-u?)*

f7(u)

where u« = 0 when off = 0 and u» < O when off < 0. When -1 < u < u« the functiony = f'(u) decreases
monotonically, and when u+ < u < 1 it increases monotonically. Graphs of the functions y = f(«) and
y = f’(u) are shown in Fig. 1 for the case when of§ > 0. The curve y = f(u) intersects the ordinate axis
at the point (0, o), while the curve y = f’(u) intersects the ordinate axis at the point (0, o + B?).

The following cases of the intersection of the curve y = f(u) and the straight line y = u/2 — vy are
possible. )

Case 1. If f'(u) > 1/2 for allu € (-1, 1) (Fig. 1a), the curve y = f(u) at each point will be “steeper”
than the straight line y = u/2 ~ v, which has a constant slope. For any value of the parameter y(y > 0)
the graphs of the functions y = f(u) and y = /2 - y intersect at a single point, the abscissa of which
will henceforth be denoted by u, and system (2.1) has a unique equilibrium position.

Case 2. If f'(u*) < 1/2, the straight line y = 1/2 intersects the graph of the function y = f'(u) at two
points (Fig. 1b) and the equation f'(x) = 1/2 has two solutions, which we will denote by u(y and u)
(uq) < ug). At points with abscissae u = ug (i = 1, 2) the straight lines y = u/2 - Yg) shown in
Fig. 1(b) i)y the dash-dot lines, touch the curve y = f(u); the quantities v (i = 1, 2) are t)unctions of
the parameters ¢« and .

If 1) > 0 and ) > 0, then for values of the parameter yfrom the intervals 0 < y < Yy and Y > Y
the graphs of the functionsy = f(u) andy = u/2 —yintersect at a single point; we will denote its abscissa
by u. When ¥y < v < () the graphs intersect at three points with abscissae u = u; (i = 1, 2, 3), where
Uy < uqy < uy < ugy < uz. In this case system (2.1) has one and three equilibrium positions respectively.
If Yy = Yqy or Y = Y(2), the system has two equilibrium positions.

When Yy < 0, ¥z) > 0 we have three equilibrium positions if 0 < y < Y(2) and one equilibrium position
if Y > Y, if ¥4y< 0 and y(2,< 0, then, for all y > 0 the system has one equilibrium position.
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The boundary for these two cases is the situation when f’(u.) = 1/2, in which case u(jy = u) = us
and Yy = Y@) = Y= = /2~ f(u»). The straight line y = u/2 - v- touches the curve y = f(u) at its points
of infiection (at which u = u*), and system (2.1) has one equilibrium position for all values of ¥ > 0
(Fig. 1c).

We will obtain the geometrical position of points in the plane of the parameters (o, B), where this
boundary situation occurs. The conditions f'(u) = 1/2 and f”(u) = 0 must be simultaneously satisfied,
or, which is equivalent

(1-u?)? =2(a® +B2)(1 +3u?) + 4aPu(3+u*) =0
ofut +6u” +1)—2(a® +BHu(l +u*)=0 (2.4)

The problem has been reduced to determining those values of the parameters o and B for which the
two polynomials (2.4) have common roots in the interval (=1, 1). In order that two polynomials should
have common roots, it is necessary and sufficient that their resultant R(c, B) should be equal to zero
[11]. Calculations show that

R(o, B) = 256(a - B2)° (80 — (B? +2)2][(cc® +2) — 8B?]
Since, by our assumption, o # *f, we have R(a, B) = 0 when

B2 +2 a’+2

W) or B=+

o=t

+o (2.5)

In the plane of the parameters (c, B) parabolas, having vertices at the points (£V(2)/2, 0) and
(0, £V(2)/2) and which touch one another at the points (V2, +v2), (-%V2), correspond to relations
(2.5). An analysis shows that for points (o, B) of parabolas (2.5) when |a] = V2, |B| = V2, the common
roots of polynomials (2.4) lie outside the interval (-1, 1), while when jof < V2, |B| < V2 they lie inside it.

Hence, the transition from Case 1 described above (when system (2.1) has a single equilibrium position
for all y > 0) to Case 2 (one or three equilibrium positions depending on ) and vice versa only occurs
on passing through the boundary curve, which is a curvilinear square, the sides of which are parts
of parabolas (2.5) when |of < V2, |B| < V2, with the exception of its vertices, for which |a) = || = V2
(Fig. 2). .

Analysis shows that Case 1 occurs outside this square. In this case, if aff < 0, then u < 0 (the axis
of symmetry of the top makes an obtuse angle with the vertical OZ and the centre of mass of the
body is situated below the suspension point O); if off = 0, then u > 0 (the centre of mass lies above
the suspension point) when 0 < ¥y < off and u < 0 when v = of8.
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Fig. 2.

Inside the curvilinear square with sides of the parabolas (2.5) we have Case 2. We distinguish in this
region the set of points (o, B) for which the quantities y, (i = 1, 2) vanish, For these points the conditions
f(u) = u/2 and f'(u) = 1/2 must be simultaneously satisfied. This is equivalent to the resultant G(c, B)
of the polynomial

(1 — u®)2u + 2(0 — Pu)(B — ow)
and the first of polynomials (2.4) is being equal to zero. Calculations show that
G(a,B) =-256(c” - B*)* g(cx, B)

2(0,B) =128(0® +B°) + 270 *B* — 480’ (0 +B?) -
-192(a* +B*) + 69602p2 + 96(cx> +p?) - 16

Since oz *f, we have G(0, B) = 0 when g(a, B) = 0.

The graph of the curve g(o, B) = 0 (Fig. 2) is a curvilinear square, the vertices of which (£v2/2, 0),
(0, £¥2/2 lie on the sides of the curvilinear square with the sides of the parabolas (2.5) (which are the
boundaries of the region considered). These vertices are cuspidal points for the curve g(a, B) = 0; the
middle of the “sides” (where o = *+f) have coordinates o # *+f.

On the part of the curve g(o., B) = 0, which lies in the first and third quadrants of the (o, ) coordinate
plane, where off > 0, Y vanishes; on the other part of the curve, in the second and third quadrants,
where aff < 0, y(;) vanishes. In regions 1 and Fig. 2 we have y;) > 0, Y, > 0, in region 2 yq, < 0,
Ye) > 0, and in regions 3 y;y < 0 and Y3y < 0; an analysis of the number of equilibrium positions of
system (2.1) as a function of> the value of y for each of these regions is carried out in the same way as
indicated above. .

In regions 3 (a unique equilibrium position for all Y > 0) we have u < 0. .

In regions 1 and 2 for those values of y for which one equilibrium position exists, we have u > 0
when 0 < y < ¥y and u < 0 when y > vy in regions 1 and u < O when y > Yy in re%ion 2.

In the case oé three equilibrium positions u = u; (i = 1, 2, 3) in regions 1 when o + B* > 1/2 we
have u; > 0,u3 > 0, and u; = 0 when y;, <Y< off and u; < 0 when o} < ¥ < y;); on the circle o +
P> = 1/2 we have u; < 0 < u, < us; for points inside this circle u; < 0, u3 > 0 and u, < 0 when
Yoy <Y < of and gy < y < af when u,; = 0 (the arcs of the circle aff < y < Y are shown by the
dashed curves in Fig. 2).

In the case of three equilibrium positions in regions 2 we have u; < 0 and u; > 0, and if aff < 0 then
u; > 0, while if af > 0 then u; < 0 when 0 < y < off and u, = 0 when o8 <y < yp).

We will now consider the case Y = ;) Ot Y = Y(z) in regions 1 and 2, when system (2.1) has two
equilibrium positions. If y = y(;) (in regions 1), we have uy = uy = ugyy < u(y) < us; if Y = Y (in regions
1 and 2), then u; < uy < Uy = W3y = U Outside the circle o® + B? = 1/2 in these regions we have
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ugpy >0, ug) > 0, and on the circle u(yy = 0, u(;) = 0 when off = 0 and uggy > 0, 4y = 0 when off < 0;
inside the circle u(;) < 0, ug) > 0. The signs of non-multiple equilibrium values of u are determined in
the same way as in he case of three equilibrium positions.

For points (o, B) which belong to the curvilinear square with sides-parabolas (2.5) (the boundary
situation when, for all y > 0, system (2.1) has one equilibrium position) we have u < 0 when off < 0
andwhenap=0u > 0,if0 <y< opfandu <0, ify= ap.

For points of the curvilinear square, described by the equation g(a, ) = 0 when aff < 0 we have
u < 0, and when af = 0, u; < 0, u3 > 0, in this case u, < 0, if 0 < y < ap and u, = 0 when

of < v <7

3. PERIODIC MOTIONS OF THE REDUCED SYSTEM

Motions of a Lagrange top close to regular precessions. We will now consider the motion of the
reduced system described by Hamiltonian (1.12).

In the neighbourhood of the equilibrium position 4 = const, v = 0 of approximate system (2.1), the
reduced system (1.13) can be regarded as quasilinear with perturbations of the order of €*, 2n-periodic
in t. The roots of the characteristic equation, hnearlzed in the neighbourhood of the equ1hbr1um position
of the approximate system are of the order of €%, and hence, for sufficiently small &, we have the non-
resonance case of Poincaré’s theory in the problem of periodic motions [12]. We will eliminate the case
Y = ¥ from consideration for the points (¢, B) which belong to the boundary of the curvilinear square
with sides (2.5), and also the case y = Yy in regions 1 and Y = Y(3) in regions 1 and 2 in Fig. 2 (see
Section 2). For all the remaining permlssﬂ)ale values of the parameters o, f and Ya unique solution of
the system with complete Hamiltonian (1.12), analytic in € and 2r-periodic in 7, is produced from each
equilibrium position of the approximate system.

By makmg the replacements of variables, described in Section 1, in the reverse order, we obtain that
Po= O(e"), and the angle of deviation of the axis of symmetry of the top from the upper vertical position
is given by the expression

0 = arccosuy + ezw/] —u? cost+O(e?) (€N

where uy is the equilibrium value of u of the approximate system (4o = u in the case of one equlhbrlum
position and ug = u; (i = 1, 2, or 3) in the case of three equilibrium positions). The quantities O(e*) in
the expression for pg and in (3.1) are 2rn-periodic in 1.

Using relations (1.5) and the relation between the constants @, b and o, B (see Section 1), we obtain
the following expressions for the angular velocities of precession and natural rotation

ﬂ_eza—ﬁcose do _ [ B (o— Bcose)cose]
dt sin29 ’ dr sin“ 6

The quantity 0 is defined in (3.1).

Relations (3.1) and (3.2) give the motions of the Lagrange top with a vibrating pomt O, close to regular
precession: the nutation angle 0 differs from a constant by a quantlty of the order of €, while the angular
velocities dy/dr, d(p/d‘c being small quantities of the order of €2, differ from constants by quantities of
the order of &*; these “corrections” are 2r- -periodic in 1.

Note that in the case of a Lagrange top with a fixed point there is only one value of the angle 6 for
each pair (a, b) of parameters of the problem (a # +b), for which a regular precession of the top exists.
When the point O vibrates, as considered in this paper, there will be one or three motions, close to
regular precession, depending on the value of the parameters o, B and 7.

(3.2)

4. THE STABILITY OF THE MOTIONS OF A TOP,
CLOSE TO REGULAR PRECESSIONS

We will consider the stability of the motions of a Lagrange top, described in Section 3, with a vibrating
point O, close to regular precessions, with respect to the varlables 0 and Pe. Solutions of the reduced
system (1.13), 2n-periodic in , of the form u* = uy + O(e*), v* = O(*) correspond to these motions
of the top.

Assuming u = u* + x, v = v* + y, we will write the Hamiltonian of the perturbed motion in the
form of a series in powers of x and y
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F=F2+F3+F4+... (4.1)

where T is the form of the kth power with respect to x and y with coefficients which are functions, 2n-
periodic in 1, if we neglect terms of the order of ¢* and higher, we have

1 1 af 1] 2
l'z=Ee(1-—u§)y2+—2—£3[f(uo)—-i]x
T, = ~eugxy” + —é— £ f"(ug)x*

1 2.2 1 3 oo 4
F4— zaxy +24£f (uo)x

In the linear approximation the question of the stability of the motions considered is determined by
the sign of the coefficient f'(ug) — 1/2 of the form Iy if f’(uy) > 1/2 we have stability and if (i) < 1/2
we have instability.

The sign of the quantity f'(ig) — 1/2 for the case of one and three equilibrium positions u = u,
v = 0 of the approximate system, which produce the periodic motions considered, can be obtained from
the results in Section 2. In the case of a single equilibrium position uy = u, v = 0 we have f'(u) > 1/2
(see Fig. 1a), and the corresponding periodic solution is stable in the linear approximation. In the case
of three equilibrium positions, when © = u; (i = 1, 2, 3), taking into account the fact that u; < u) <
u; < ug) < uz and also that f(uo) > 1/2 when -1 < u < u(yand ugy < u < 1 and f'(u) < 1/2 when u )
< u < uy (Fig. 1b), we obtain that the periodic motions corresponding to the larger equilibrium value
of u (u3) and the smaller equilibrium value of u (1) are stable, and the motion corresponding to the
middle equilibrium value of u (u,) is unstable in the linear approximation.

This periodic motion, which is unstable in the linear approximation, remains unstable in the non-
linear problem also, as follows from the Lyapunov’s theorem on stability in the first approximation [13].

We will give a rigorous solution of the problem of the stability of the periodic motions of the system
in question, which are stable in the linear approximation. To solve it we will carry out a non-linear analysis
using the results of the KAM-theory [14].

Using a Birkhoff canonical transformation x, y —» X, Y, we can reduce the Hamilton function (4.1)
to normal form [15]

I“=-;—co(X2 + Y2)+:]‘-C(X2 +Y2)? 4+ 04

where Os is a set of terms, 2n-periodic in 1, the power of which with respect to X and Y is no less than
five, and @ and ¢ are constant coefficients which, as calculations show, have the following form

@ =2~ ) f'(up) = 15) + Oe®)

=- & +O(e?
© =6 gy — Ry T

¢, = 4Cud +15ud = 2)(0* +B*) - 8uy(3ug +20u2 +9aP(a® +p%)+

A
\\\l% \‘\ :-//
1) ill ol H
1] [; [ ]
<L\ ~TN

(@) (b)
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+4(uy +39ug +45u2 +11)0®B? +2(15ug +32u2 +1)(1 - ud)*(0® +B%) -
—8ug (ug +17u2 +6)(1 — u2)2 B+ (2u2 +1)(1 —u?)’

If ¢ # 0, then, by the Arnol’d-Moser theorem [14], the periodic motion under consideration is stable.
For fairly small € the stability condition will break down when the equality ¢c; = 0 is satisfied, where
the quantity u occurring in ¢, is the root of Eq. (2.2).

To investigate the system formed by Eqs (2.2) and ¢; = 0, we will introduce the new parameters

o =02+p2 o,=0B(c; >0) 4.2)
The quantities 6; and o, must satisfy the obvious inequalities
G, +20,>0, 6,-20,>0 (4.3)

where an equality sign in (4.3) is impossible, since by our assumption o *f.
The equation ¢; = 0 is quadratic, while Eq. (2.2) is linear in ¢, and o; they have the form

4(3ug +15u3 —2)07 + 4(uy +33ug +15u3 +15)0% —

—8uy(3ug +20u3 +9)0,0, +2(15ug +32u2 +1)(1 - ul )’ -

~8ug(ug +17ug +6)(1—ud )20, + Qua +1)(1 ~ul)* =0 (4.4)
UGy — (1 +u2)oy = (up 12— YY1 — u2)?

Expressing 0, in terms of 6; from the second equation of (4.4) and substituting it into the first, we
obtain the equation

867 — 2[15ug + 1+ 8ugy(3— u2 )10, —[4(ug +33ug +15u3 +15)y* -
—4uo(3ud +69ug +61ud +27)y + (3u +102u§ +108ud +42u2 +1)]=0 (4.5)

We will consider it as quadratic with respect to 6;. We will be interested in the conditions for which
the roots of this equation are real, positive and, moreover, satisfy relations which follow from inequalities
(4.3). These relations have the form

o1 > (ug —2Y)(1—ug)?, O} > —(ug — 2Y)(1 +up)> (4.6)
Equation (4.5) has real solutions if its discriminant
D=12(1+u})* D,
D, =32(ud + 5)y? —16(Tud +17)ugy + (83ug +106u? +3)

is non-negative. We will consider D; as a quadratic trimonial in ¥; its discriminant ~1920(1 — u})* < 0
when | uy| < 1, and hence the condition D; > 0, and, of course, D > 0 is satisfied for all permissible
values of the parameters y and uy. Hence, Eq. (4.5) has two roots, equal to

[15ug +1+8ugy(3—ud) = (1+u3)[3D1/8 (4.7

An investigation of their signs shows that the larger root (which we will henceforth denote by o) is
always positive; the smaller root is either negative or positive, but it then does not satisfy conditions
(4.6). The root of satisfies conditions (4.6) for any admissible values of the parameters ug and .

Hence, Eq. (4.5) has the single solution 6; = o7 which satisfies all the postulated conditions. The
following value of 63 corresponds to it

«  Grug—(up /2 -7)(1 —ud)?
0, = o} = 120 0|+ug 0

(4.8)

obtained from the second equation of (4.4).
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Returning once again to the parameters o and B, according to relations (4.2), we obtain four pairs
of values of o and B corresponding to the pair of values 6, and o,

o, =(AxB)/2, B, =(AFB)/2
O34=(-A£B)/2, B3,=(-AFB)/2 (4.9)

A=.c]+20;, B=40]-20,

Suppose the value of yis fixed. Then relations (4.9), taking expressions (4.7) and (4.8) into account,
specify curves in the (o, B) plane in parametric form (the parameter is the quantity g, which varies
from -1 to 1), where the sufficient condition for stability of the periodic motion of the system considered
breaks down.

The form of these curves depends on the value of the parameter Y. Analysis shows that the case when
0 < vy < 1and y > 1 will be qualitatively different. In Fig. 3(a~c) we show the cases0 <y < 1,y=1,
v > 1, respectively. In all these cases curves (4.9) form a closed contour, shown in Fig. 3 by the continuous
curve. The contour has vertices at points with coordinates (£V(2(2 - 7)), +V(2(2 - 7))) when y < 1 and
(£V(2(2y- 1)), £V(2(2y- 1)) when y = 1, when o = B (corresponding to uy = 1), and also vertices at
points with coordinates (£V(2(2 + v)), £V(2(2 + v))), when o = —B (in this case uy = ~1).

The dashed curve in Fig. 3 represents a curvilinear square with sides-parabolas (2.5), inside which,
at each point (a, B), there is one or three periodic motions of the system (depending on ), while outside
there is only one such motion. When y > 1 the contour of curves (4.9) as a whole contains a curvilinear
square and its boundary (Fig. 3c). When 0 < vy < 1 each of curves (4.9) also lies outside the region
occupied by this square, but, with one of the parabolas (2.5), there is associated a point which is a cuspidal
point for the curve (Fig. 3a); the coordinates of the cuspidal points are (+(+ Y")N2, = V(2)y) and
(=NQ)y, £ + Y)N2), and the value uy = v of the parameter u, corresponds to these points. When
v = 1 the cuspidal points of curves (4.9) merge in pairs and coincide with the vertices of the contour
formed by these curves (Fig. 3b).

Hence, the 2r-periodic motions of this system, which is stable in the linear approximation and corres-
ponds to points (o, B) inside the curvilinear square with sides (2.5), are also stable for any values of yin
the non-linear problem. The unique periodic motion for points outside this square, which is stable in
the linear approximation, is also stable, with the exception, possibly, of points (o, B) lying on curves (4.9).

The conclusions reached regarding the stability of periodic motions of this system can be extended
to the corresponding motions of a Lagrange top, close to regular precessions: for points (¢, ) inside
a square with sides (2.5) they are either one stable motion of the top (depending on ¥) or three such
motions, two of which are stable and one of which is unstable; outside the square there is a single motion
which is stable for all permissible values of ¢, B and v, with exception, perhaps, of points belonging to
curves (4.9).
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