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The motion of a Lagrange top, whose suspension point performs high-frequency vertical harmonic oscillations of small amplitude, 
is considered. The angular velocities of the natural rotation of the top and of the rotation of its axis of symmetry around the 
vertical are assumed to be small. It is well known that, in the case of a classical Lagrange top with a fixed suspension point, for 
any values of the parameters of the problem (the values of the constants of cyclical integrals) there is a unique regular precession 
of the top. When the suspension point vibrates the following result is established, which has no analogues in the classical problem: 
regions are distinguished in the plane of those parameters in which, for any position of the centre of gravity of the top on the 
axis of symmetry, there is a unique periodic motion of the top (with a period equal to the period of oscillations of the suspension 
point), close to regular precession, and also regions in which, depending on the position of the centre of gravity, there can be 
one or three such motions. A rigorous solution of the problem of the stability of these motions of the top is given using the 
methods of the KAM theory. © 2000 Elsevier Science Ltd. All rights reserved. 

This paper is a development of the results obtained in [1], where the problem of the periodic motions 
of a spherical pendulum with a vibrating suspension point is solved with assumptions similar to those 
used here. 

A number of investigations have been devoted to different aspects of the problem of the dynamics 
of a rigid symmetrical body with a vibrating suspension point: the motion of a rapidly rotating symmetrical 
and close to symmetrical gyroscope when there are vertical vibrations of the suspension point has been 
investigated in [2, 3], the behaviour of a Lagrange top when the suspension point performs harmonic 
oscillations in a horizontal plane was considered in [4], the motion of a viscoelastic rigid body with a 
moving base was investigated in [5], and the rotation of a Lagrange top when there are random 
oscillations of the point of support was considered in [6]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M .  C O N V E R S I O N  O F  T H E  
H A M I L T O N  F U N C T I O N  

Consider a dynamic symmetrical rigid body moving in a uniform gravity field around a fixed point 
O. Suppose the centre of mass of the body lies on its dynamic-symmetry axis. This rigid body is called 
a Lagrange top; its motion was investigated in detail in [7-9]. 

We will assume that the point O executes vertical motion in accordance with the law O,O = {(T) 
about a certain fixed point O. Suppose OXYZ is a system of coordinates moving translationally in absolute 
space (the OZ axis is directed vertically upwards) and Oxyz is a system of coordinates, rigidly attached 
to the body, whose axes coincide with the principal axes of inertia of the body for the point O, where 
the Oz axis is directed along the dynamic-symmetry axis, and the centre of mass G of the body lies on 
the positive semiaxis Oz(OG = za, za > 0). We will specify the orientation of the system of coordinates 
Oxyz with respect to OXYZ using the Euler angles. 

The kinetic energy of the body is given by the expression 

I 2 1 
T = - m v  o+mv o + [A(p 2 2 " vG'c' + q2 ) + Cr  2 ] (1 .1)  

where m is the mass of the body, A and C are the equatorial and axial moments of inertia respectively, 
Vo is the velocity of the point O, V6rel = to x OG is the velocity of the point G in the system of coordinates 
OXYZ, and o~ is the vector of the absolute angular velocity of rotation of the body, having projections 
p, q and r in the attached system of coordinates. 
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In projections onto the Oxyz axes we have 0~3 = (0, O, za) r, VGr d = (qz G, -pzc , ,  O) r, Vo = ~n, where 
n = (sin 0 sin q0, sin O, cos ¢p, cos O) r is the unit vector of the vertical axis OZ. 

From (1.1) and Euler's kinematic equations we have the following expression for the kinetic energy 
of the body 

T = I m~2 _ mzc~O sin 0 + 1 A(~} 2 sin2 0 + 02) + 2 C(~ cos 0 + {0) 2 
2 2 

(1.2) 

The potential energy of the body can be calculated from the formula 

I-I = mgzc, cos 0 + mg~(t) (1.3) 

It follows from (1.2) and (1.3) that the coordinates ~g and 9 are cyclical, and the momenta corres- 
ponding to them are the same as in the case of the motion of a Lagrange top with a fixed point O 

pv = A~g sin 2 0 + C(~ cos 0 + q0) cos 0 

P~0 = C(~ cos 0 + £0) 

(1.4) 

We will introduce the notat ionp~ = A a , p ~  = A b  for the constant quantitiespv andp~ (where a and 
b are constants). We then have from (1.4) 

= a - b c ° s 0  Ab (a - b cos 0) cos 0 (1.5) 
sin20 ' f f = ~  sin20 

The momentump0, corresponding to the positional coordinate 0, depends on the motion of the point 
O and given by the equation 

Po = AO - mzG~sin 0 (1.6) 

From (1.2), (1.3), (1.5) and (1.6) we obtain the following expression for the Hamilton function (un- 
important terms which are functions of time or are constant are omitted) 

H = A ( a - b c ° s O ) 2  (P0 + mzG~sin0) 2 
+ ~- mgzc cos0 (1.7) 

2sin 2 0 2A 

The Hamiltonian (1.7) corresponds to a system with one degree of freedom with generalized 
coordinate 0. 

We will further assume that ~(t) = a. cos D.t. We will introduce the dimensionless time "t = D.t and 
dimensionless parameters of the problem and the momentum P0 by the formulae a = D.a', b = D.b', 
P0 = Af/p~. Hamiltonian (1.7) can then be rewritten in the form 

H'  ( a ' - b ' c o s O )  2 + l  (p~_cs inxs inO)2  +dcos0 ,  (1.8) 
= 2sin20 

where 

mzGa-------~* d = mgzG 
c =  A ' ~ (c>0,  d > 0 )  

We will further assume that: (1) the amplitude a.  of the vibrations of the point O is small compared 
with the characteristic dimension of the body, (2) the natural frequency ~l(g/l) (l = A / ( m z c )  is the reduced 
length) of small oscillations of the body as a physical pendulum (when a' = b' = 0) in the neighbourhood 
of stable equilibrium 0 = n is much less than the frequency ~ of the vibrations of the point O, and (3) 
the quantities a '  and b', representing the angular velocities of natural rotation of the body q0 and the 
rotation of its axis of symmetry around the vertical ~), are small. Taking these assumptions into account, 
we have that 

c = a , / l = £  2 (0<E.~I) ,  d=g/(f f~21)=g4y (y>0) ,  a'=e21x, b '=e2~  

The parameters ~x and ~ can be taken to be arbitrary quantities. We will further assume that 
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ct2 ~ [32. The case e~ 2 = [32, when the axis of symmetry of the top can occupy the vertical position 
(0 = 0 or 0 = n) requires a special consideration. 

Making the change of variables 0, p~ ---) x, X in the Hamiltonian (1.8) using the formulae 0 = x, 
p~ --4 eX, we can rewrite it, taking the notation employed into account, in the form 

H ' =  H o +EH t + I E 2 H  2 + l--gall3 (1.9) 
2! 3! 

1 
H o = 0 ,  H I= -~X 2, H 2=-2Xsinxsinx 

H3 =3[  sin2"~sin2 x+2"Yc°sx-I (°~-~c---°sx)2 l s i n  2 x 

We will further carry out the canonical transformation x, X--) q,p, 2~-periodic with respect to x, such 
that the new Hamilton function does not contain the time x in terms up to the third order inclusive in 
e. We obtain its transformation using the Depry-Hori method [10]. 

The new Hamiltonian K(q, p, x)must  have the following structure 

K° +EKI + 1 EEK22! + 1 e3K3. + 0 ( 8  4 ) (1.10) K 

where K 0 = 0 and the functions K1,/(2 and K 3 are found from the relation [10] 

K t = H  I - 0 W  I/0t,  K 2 = H  2+/-IH I+KI, I - 0 W  2/0t  

K s = H 3 + L1H 2 + 2L2H ! + 2Ki, 2 + K2, I - 0W 3 lot 

Here Lj = (f, Wj) is the Poisson bracket of the functionsf  and W h K1, 1 = LIK1, K1,2 = L1K2, K2, 1 - 
L2K1 -L1KI,1, while the functions W/(q, p, x) (i = 1, 2, 3) are chosen so that the quantities Ki (i = 1, 2, 
3) do not contain x. Calculations show that 

W I = 0, W 2 = 2p cos'c sin q, W 3 = - 3 sin 2"c sin 2 q _ 6p2 sin ~ cos q 
4 

=1  2 = 3  K! ~ P ,  K2=0,  K 3 sin2q+67cosq-~ 3(tx-~c°sq)2 (1.11) 
sin 2 q 

Simultaneously with the transformation of the Hamiltonian, we shall seek a corresponding canonical 
replacement of variables having the form 

x = q + Eq (!) + 1E2q(2) + 1 E(3)q(3) + O(E4) 
2! 3! 

0) I 3~(2)  l 2_(3) X = p + e p  +-~..e'v +~e p +O(I; 4) 

The functions q(i)(q,p, z) andp(i)(q,p, x) (i = 1, 2, 3) are obtained using the formulae of the Depry-Hori 
method [10] (which are not derived here) using the expressions for W,. (i = 1, 2, 3) from (1.11). These 
functions have the form 

qa) = 0, q(2) = 2 cos x sin q, q(3) = -12p sin x cos q 

p(l) = 0, p(2) =--2pcos'~cosq, p(3) =-0.75sin2,Csin2q-6p2 sin'rsinq 

After substituting the functions Ki from (1.11) into (1.10) we make one more canonical univalent 
replacement of variables q, p ~ u, v, given by the formulae u = cos q, p = - o  sin q, which reduce (1.1) 
to algebraic form. We have 

K = Ev2(I -u2) /2+e3H(u)+O(£ 4 ) 

(ot-13u) 2 (1.12) 
n(u) = l ( l -  u2) + vu + 

2(1 - u 2) 4 
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The  equat ions  of  mot ion  corresponding to (1.12) have the form 

du ~K dv  ~K 

dr, ~v ' dr, 3u 
(1.13) 

2. T H E  A P P R O X I M A T E  S Y S T E M  A N D  ITS  E Q U I L I B R I U M  P O S I T I O N S  

If  we neglect  terms O(~4), the following au tonomous  system of  differential  equat ions  will cor respond 
to the t runcated  Hami l ton ian  obta ined 

d U = e v ( l _ u 2 ) ,  dv  - e  3 d H  
- -  = euv 2 (2.1) 
dr" dr" du 

We will obtain the equilibrium positions of  approximate system (2.1). Since u ~ __. 1, in the equilibrium 
posit ion v = 0, and the quant i ty  u satisfies the relat ion dl-l/du = 0, where  d H / d u  = f ( u )  - u /2  + )' and 
f ( u )  = (o~ - [~u)(txu - 13)(1 - u2) -2. 

The  equat ion 

1 
f ( u )  = -~ u - )' (2.2) 

which the equil ibr ium values o f u  satisfy, will be investigated graphically in the interval ( -1 ,  1); its roots  
will be the abscissae of  the points of  intersection of  the curve y = f ( u )  and the straight line y = u/2 - 
)'. 

As an analysis shows, the function y = f ( u )  increases monotonical ly  in the interval (-1,  1) for  any 
admissible values of  ct and 13. Its derivative 

(tx2 + ~2 )(1 + 3u 2) - 2cz13u(3 + u 2 ) 
f ' ( u )  - (1 - u2) 3 (2.3) 

has a min imum at u = u.,  which is the root  of  the equat ion f ' ( u )  = 0, where  

f " ( u )  = 
612(t~ 2 + [32)u(1 + u2)-c t13( l+6u 2 +U4)]  

(1 - u Z )  4 

where  u.  > /0  when t~13 t> 0 and u.  < 0 when t~13 < 0. When  -1 < u < u.  the func t iony  = f ' ( u )  decreases  
monotonical ly,  and when u,  < u < 1 it increases monotonically.  Graphs  of  the func t ionsy  = f ( u )  and 
y = f ' ( u )  are shown in Fig. 1 for  the case when ct13 > 0. The  cu rvey  = f ( u )  intersects the ordinate  axis 
at the point  (0, -~13), while the curve y = f ' ( u )  intersects the ordinate  axis at the point  (0, a2 + 132). 

The  following cases of  the intersection of  the curve y = f ( u )  and the straight line y = u/2 - y are 
possible. 

Case 1. I f f ' ( u )  > 1/2 for all u e (-1,  1) (Fig. la) ,  the cu rvey  = f ( u )  at each point  will be "s teeper"  
than the straight line y = u/2 - )', which has a constant  slope. For  any value of  the pa rame te r  y(y > 0) 
the graphs of  the funct ions y = f ( u )  and y = u/2 - y intersect at a single point,  the abscissa of  which 
will hencefor th  be deno ted  by u, and system (2.1) has a unique equil ibrium position. 

Case 2. I f f f (u* )  < 1/2, the straight l iney  = 1/2 intersects the graph of  the func t iony  = i f ( u )  at two 
points (Fig. lb )  and the equat ion  f ' ( u )  = 1/2 has two solutions, which we will deno te  by u(1) and u~2) 
(u(1) < u(2)). At points with abscissae u = u(i) (i = 1, 2) the straight lines y = u/2 - )'(i), shown in 
Fig. l (b)  by the dash-dot  lines, touch the curve y = f(u);  the quantit ies 'Y(i) (i = 1, 2) are functions of  
the parameters  cz and 13. 

If ~/0) > 0 and )'(2) > 0, then for values of  the pa ramete r  y f rom the intervals 0 < )' < )'(1) and y > )'(2) 
the^graphs of  the funct ionsy  = f ( u )  and y = u/2 - y  intersect at a single point;  we will deno te  its abscissa 
by u. When  )'(1) < )' < ~/(2) the graphs intersect at three  points with abscissae u = ui (i = 1, 2, 3), where  
Ul < u0) < u2 < u(2) < u3. In this case system (2.1) has one and three equil ibrium positions respectively. 
If )' = ~/0) or  )' = )'(2), the  system has two equil ibrium positions• 
• When  y,()l < 0, y,()2 > 0 we have three equilibrium positions if 0 < "/< "/()2 and one  equilibrium position 
ff )' > )'(2); if )'(1)< 0 and )'(2)< 0, then, for all )' > 0 the system has one  equil ibrium position. 
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Fig. 1. 

The boundary for these two cases is the situation whenf ' (u , )  = 1/2, in which c a s e  u(1 ) = u(2 ) = U* 
and Y(1) = Y(2) = Y* = u,/2 -f(u,). The straight liney = u/2 - y, touches the curvey = f(u) at its points 
of inflection (at which u = u*), and system (2.1) has one equilibrium position for all values of y > 0 
(Fig. lc). 

We will obtain the geometrical position of points in the plane of the parameters (0q 15), where this 
boundary situation occurs. The condit ionsf ' (u)  = 1/2 andf" (u)  = 0 must be simultaneously satisfied, 
or, which is equivalent 

(1 - U 2)3 _ 2(0~2 + 1~2)(1 + 3u 2) + 4C~15u(3 + u 2) = 0 

0~15(U 4 + 6U 2 + 1) - 2 ( ~  2 + 152)u(1 + u 2) = 0 (2.4) 

The problem has been reduced to determining those values of the parameters o~ and 15 for which the 
two polynomials (2.4) have common roots in the interval (-1, 1). In order that two polynomials should 
have common roots, it is necessary and sufficient that their resultant R(a,  15) should be equal to zero 
[11]. Calculations show that 

R ( ~ ,  15) = 256(o~ 2 - 152)6 [80~2 _ (132 + 2)2 ] [(0c2 + 2)2 _ 8~2 ] 

Since, by our assumption, c~ # +15, we have R(0q 15) = 0 when 

~ 2 + 2  ~ = + 0 t 2 + 2  
a = +  2 d 2  or 24~  (2.5) 

In the plane of the parameters (ct, 15) parabolas, having vertices at the points (__.q(2)/2, 0) and 
(0, _+'/(2)/2) and which touch one another at the points (q-2, _+~/2), (-__.~/2), correspond to relations 
(2.5). An analysis shows that for points (ct, 15) of parabolas (2.5) when Io4 i> q2, 1151 I> x/2, the common 
roots of polynomials (2.4) lie outside the interval (-1, 1), while when It~ < ~/2, 1151 < ~/2 they lie inside it. 

Hence, the transition from Case 1 described above (when system (2.1) has a single equilibrium position 
for all Y > 0) to Case 2 (one or three equilibrium positions depending on y) and vice versa only occurs 
on passing through the boundary curve, which is a curvilinear square, the sides of which are parts 
of parabolas (2.5) when loci < ~/2, 1151 < "/2, with the exception of its vertices, for which Io~l = II51 = ~/2 
(Fig. 2). 

Analysis shows that Case 1 occurs outside this square. In this case, if etl3 < 0, then u < 0 (the axis 
of symmetry of  the top makes an obtuse angle with the vertical OZ and the centre of mass of the 
body is situated below the suspension point O); if ~15 t> 0, then u > 0 (the centre of mass lies above 
the suspension point) when 0 < y < ~15 and u <~ 0 when y/> c~15. 
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Fig. 2. 

Inside the curvilinear square with sides of the parabolas (2.5) we have Case 2. We distinguish in this 
region the set of points (o~, 13) for which the quantities )'0) (i = 1, 2) vanish. For these points the conditions 
f(u) = u/2 andff(u) = 1/2 must be simultaneously satisfied. This is equivalent to the resultant G(cz, 13) 
of the polynomial 

(1  - u 2 ) 2 u  + 2 ( i x  - 13u)(13 - wa) 

and the first of polynomials (2.4) is being equal to zero. Calculations show that 

G(cz, 13) = -256(o~ 2 - 132)4 g(oc, 13) 

g ( ( t ,  13) = 1 2 8 ( ~  6 + 136 ) + 270~4134 _ 480~2132 (0~2 + 132 ) _ 

-192(a 4 + 134) + 696tz2132 + 96(o~2 + 132)_ 16 

Since a s  _+13, we have G(ct, 13) = 0 wheng(ec, 13) = 0. 
The graph of the curve g(a, 13) = 0 (Fig. 2) is a curvilinear square, the vertices of which (___~/2/2, 0), 

(0, ___',/2/2 lie on the sides of the curvilinear square with the sides of the parabolas (2.5) (which are the 
boundaries of the region considered). These vertices are cuspidal points for the curve g(tx, 13) = 0; the 
middle of the "sides" (where tz = _+ 13) have coordinates oc ~ __+ 13. 

On the part of the curve g(ct, 13) = 0, which lies in the first and third quadrants of the (a, 13) coordinate 
plane, where a13 > 0, Y(1) vanishes; on the other part of the curve, in the second and third quadrants, 
where a13 < 0, )'(2) vanishes. In regions 1 and Fig. 2 we have )'(1) > 0, )'(2) > 0, in region 2 )'(1) < 0, 
()2 > 0 ,  and in regions 3 )'(1 < 0 and )'(2) < 0; an analysis of the. number of equilibrium positions of 

system (2.1) as a function o~)the value of 7 for each of these regions is carried out in the same way as 
indicated above. 

In regions 3 (a unique equilibrium position for all 7 > 0) we have u < 0. 
In regions 1 and 2 for those values of )' for which one equilibrium position exists, we have u > 0 

when 0 < ), < ) '(1) and u < 0 when T > )'(2) in regions 1 and u < 0 when 7 > )'(2) in region 2. 
In the case of three equilibrium positions u = ui (i = 1, 2, 3) in regions 1 when cz ~ + 132 > 1/2 we 

have u2 > 0, u3 > 0, and ul I> 0 when )'~1) < )' ~< cz13 and Ul < 0 when tx13 < )' < 2~ on the circle t~ 2 + 
132 = 1/2 we have Ul < 0 < u2 < u3; ~ r  points inside this circle ul < 0, u3 and u2 < 0 when 
~0) < )' < tx13 and )'(1) <( )' • 0~13 when u2/> 0 (the arcs of the circle t~13 ~< )' < )'(2) are shown by the 

ashed curves in Fig. 2). 
In the case of three equilibrium positions in regions 2 we have Ul < 0 and u3 > 0, and if tz13 ~< 0 then 

u2 > 0, while if 0~13 > 0 then u2 < 0 when 0 < ), < cz~ and u2/> 0 when ct~ ~< 7 < )'C2). 
We will now consider the case )' = Z 1 or T = )'(2) in regions 1 and 2, when system (2.1) has two ()  

equilibrium positions. If) '  = )'0~ (in regions 1), we have ul = u2 = ucx~ < u(2) < u3; if)' = )'(2) (in regions 
J • • 2 ~ 2 • • 

1 and 2), then Ul < Ul < u(2) = u~3) = U~a). Outside the circle ct + ~ = 1/2 in these regsons we have 
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u(x) > 0, u(2) > 0, and on the circle uo) = 0, U(2 ) ~ 0 when a~ />  0 and U(1 ) ) 0 ,  U~2 ) = 0 when a~ < 0; 
inside the circle u(1) < 0, u(2) > 0. The signs of non-multiple equilibrium values oi u are determined in 
the same way as in he case of three equilibrium positions. 

For points (a, [3) which belong to the curvilinear square with sides-parabolas ~2.5) (the boundary 
situation when, for  all y > 0, system (2.1) has one equilibrium position) we have u < 0 when a13 < 0 
and when a~ />  0 u > 0, if 0 < Y < a~ and u ~< 0, if Y ~> a[3. 

For points of the curvilinear square, described by the equation g(tx, ~) = 0 when t ~  < 0 we have 
u < 0, and when tx[3 i> 0, Ux < 0, u 3 > 0, in this case u2 < 0, if 0 < Y < ¢t~ and u2 /> 0 when 
0{,[~ ~ '~ < 'Y(2)" 

3. P E R I O D I C  M O T I O N S  OF T H E  R E D U C E D  SYSTEM 

Motions of a Lagrange top close to regular precessions. We will now consider the motion of the 
reduced system described by Hamiltonian (1.12). 

In the neighbourhood of the equilibrium position u = const, v = 0 of approximate system (2.1), the 
reduced system (1.13) can be regarded as quasilinear with perturbations of the order of e 4, 2r~-periodic 
in x. The roots of the characteristic equation, linearized in the neighbourhood of the equilibrium position 
of the approximate system are of the order of c 2, and hence, for sufficiently small ~, we have the non- 
resonance case of Poincar6's theory in the problem of periodic motions [12]. We will eliminate the case 
¥ = 7" from consideration for the points (t~, 13), which belong to the boundary of the curvilinear square 
with sides (2.5), and also the case T = 70)in regions 1 and 7 = 7(2) in regions 1 and 2 in Fig. 2 (see 
Section 2). For all the remaining permissible values of the parameters tx, 13 and y a unique solution of 
the system with complete Hamiltonian (1.12), analytic in e and 2re-periodic in x, is produced from each 
equilibrium position of the approximate system. 

By making the replacements of variables, described in Section 1, in the reverse order, we obtain that 
4 P0 = O(e ), and the angle of deviation of the axis of symmetry of the top from the upper vertical position 

is given by the expression 

e = a r c c o s  U 0 -t- E2 41  -- l/2 COS 1; -t- O(E  4 ) (3.1) 

where u0 is the equilibrium value of u of the approximate system (u0 = t~ in the case of one equilibrium 
position and u0 = ui (i = 1, 2, or 3) in the case of three equilibrium positions). The quantities O(e 4) in 
the expression forp0 and in (3.1) are 2~-periodic in x. 

Using relations (1.5) and the relation between the constants a, b and ct, [3 (see Section 1), we obtain 
the following expressions for the angular velocities of precession and natural rotation 

dv  -aeos0 = < - cos0 cos0q 
dx sin 20 ' ax L C s-~n 2 -0 'J (3.2) 

The quantity 0 is defined in (3.1). 
Relations (3.1) and (3.2) give the motions of the Lagrange top with a vibrating point O, close to regular 

precession: the nutation angle 0 differs from a constant by a quantity of the order of e 2, while the angular 
velocities dWd'c, dtp/d'c, being small quantities of the order of e 2, differ from constants by quantities of 
the order of e4; these "corrections" are 2n-periodic in z. 

Note that in the case of a Lagrange top with a fixed point there is only one value of the angle 0 for 
each pair (a, b) of parameters of the problem ( a ,  --+b), for which a regular precession of the top exists. 
When the point O vibrates, as considered in this paper, there will be one or three motions, close to 
regular precession, depending on the value of the parameters tx, [3 and 7. 

4. T H E  S T A B I L I T Y  OF THE M O T I O N S  OF A TOP, 
C L O S E  TO R E G U L A R  P R E C E S S I O N S  

We will consider the stability of the motions of a Lagrange top, described in Section 3, with a vibrating 
point O, close to regular precessions, with respect to the variables 0 and Po. Solutions of the reduced 
system (1.13), 2n-periodic in 0, of the form u* = u0 + O(e4), ~* = O(e 4) correspond to these motions 
of the top. 

Assuming u = u* + x, ~ = "o* + y, we will write the Hamiltonian of the perturbed motion in the 
form of a series in powers ofx  and y 
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F = F 2  + r3 + F4 + . . .  (4.1) 

where Fk is the form of the kth power with respect to x and y with coefficients which are functions, 2re- 
periodic in x, if we neglect terms of the order of e 4 and higher, we have 

F2 =2e(1-u2)y2+l£3I f ' (uo) -2]x2  

F3 = -gu°xY 2 + 1 £3 f,,(Uo )x 3 

F 4 = - l ~ x 2 y 2  -]-I-~I~3:"(Uo)X4 
z z4 

In the linear approximation the question of the stability of the motions considered is determined by 
the sign of the coefficientf'(Uo) - 1/2 of the form F2: iff'(uo) > 1/2 we have stability and iff '(u0) < 1/2 
we have instability. 

The sign of the quantity f'(uo) - 1/2 for the case of one and three equilibrium positions u = u0, 
~) = 0 of the approximate system, which produce the periodic motions considered, can be obtained from 
the results in Section 2. In the case of a single equilibrium position u0 = u, u = 0 we have f'(u) > 1/2 
(see Fig. la),  and the corresponding periodic solution is stable in the linear approximation. In the case 
of three equilibrium positions, when u0 = ui (i = 1, 2, 3), taking into account the fact that ul < uo) < 
U 2 < U()2 < U3 and also thatf '(u0) > 1/2 when -1 < u. < u()l and u(22) . . . .  < u < 1 andf ' (u )  < 1/2 when u(1 ) 
< u < U ( ) (  g . 2  Fi lb), we obtain that the periodic motions corresponding to the larger equlhbrmm value 
of u (u3) and the smaller equilibrium value of u (ul) are stable, and the motion corresponding to the 
middle equilibrium value of u (u2) is unstable in the linear approximation. 

This periodic motion, which is unstable in the linear approximation, remains unstable in the non- 
linear problem also, as follows from the Lyapunov's theorem on stability in the first approximation [13]. 

We will give a rigorous solution of the problem of the stability of the periodic motions of the system 
in question, which are stable in the linear approximation. To solve it we will carry out a non-linear analysis 
using the results of the KAM-theory [14]. 

Using a Birkhoff canonical transformation x, y --)X, Y, we can reduce the Hamilton function (4.1) 
to normal form [15] 

1 / 
= 2- t.0(X 2 + y2 ) + 2:.. c(X 2 + y2 )2 + 05 F 

2 4 

where Os is a set of terms, 2~-periodic in x, the power of which with respect to X and Y is no less than 
five, and to and c are constant coefficients which, as calculations show, have the following form 

co = E 2 ~/(1 - u ~ ) ( f ' ( u o )  - ½ )  + o(E 4 ) 

E¢I 
c = -  1 6 ( f , ( u o ) _ ~ ) 2 ( l _ u ~ ) 6  I'O(E 2) 

c t = 4(3u04 + 1 5u02 - 2)(a 4 + 6 4) - 8u 0 (3u 4 + 20u02 + 9)a~l(ct 2 + I~ 2 ) + 

J 

(a) (b) 

Fig. 3. 

(c) 
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+4(u06 + 39u 4 + 45u 2 + 11)a2132 + 2(15u04 + 32u~ + 1)(1 - u~)2(o~: + 132) - 

-8u  0 (u04 + 17u~ + 6)(! - u02)2 ct~ + (2u 2 + 1)(1 - u 2)5 

I f c  ~ 0, then, by the A r n o l ' d - M o s e r  t heo rem [14], the periodic mot ion  under  considerat ion is stable. 
For  fairly small e the stability condi t ion will break  down when the equali ty ca = 0 is satisfied, where  
the quanti ty u0 occurr ing in Cl is the root  of  Eq. (2.2). 

To investigate the system formed  by Eqs (2.2) and Cl = 0, we will introduce the new paramete rs  

01 = tx 2 + 132, 02 = ~13 (ol > 0) (4.2)  

The  quantit ies 01 and 02 must  satisfy the obvious inequalities 

Gi + 2O2 > 0, O1 - 202 > 0 (4.3) 

where  an equali ty sign in (4.3) is impossible, since by our  assumption (t ~ ---I~. 
The  equat ion  Cl = 0 is quadratic,  while Eq. (2.2) is l inear in ol  and 02; they have the form 

4(3Uo 4 + 15u 2 - 2)02 + 4(u06 + 33u 4 + 15u 2 + 15)o5 - 

-8Uo(3U 4 + 20u02 + 9)0, G 2 + 2(15u 4 + 32Uo 2 + 1)(1 - Uo 2 )2 0,  - 

-8u  0 (u~ + 17u~ + 6)(1 - u~)2 02 + (2Uo 2 + 1)(1 - u 2 )5 = 0 (4.4) 

UoOl - (1 + u02)o2 = (u0 / 2 - ' t ) (1  - u02)2 

Expressing 02 in terms of  oa f rom the second equat ion of  (4.4) and substituting it into the first, we 
obtain the equat ion  

8 ~  - 2115ug + 1 + 8u07(3- ug)]~j - [4(u 6 + 33u 4 + 15u~ + 15)72 - 

-4u0 (3u 6 + 69u g + 61u02 + 27) 7 + (3u08 + 102u 6 + 108ug + 42u02 + 1)] = 0 (4.5) 

We will consider  it as quadrat ic  with respect  to 01. We will be interested in the condit ions for  which 
the roots of  this equat ion are real, positive and, moreover,  satisfy relations which follow from inequalities 
(4.3). These  relat ions have the form 

01 > (u 0 - 27 ) (1 -  u0) 2, 01 > - (u  0 - 2)')(1 + u0) 2 (4.6) 

Equa t ion  (4.5) has real  solutions if its discriminant 

D = 12(1 + u2)2Dl 
D I = 32(u 2 + 5)72 - 16(7u 2 + 17)u0Y + (83u 4 + 106u02 + 3) 

is non-negative.  We will consider  Dx as a quadrat ic  tr imonial  in y, its discriminant -1920(1 - u2) 3 < 0 
when I u01 < 1, and hence  the condit ion D 1 > 0, and, of  course, D > 0 is satisfied for  all permissible 
values o f  the paramete rs  Y and u 0. Hence ,  Eq. (4.5) has two roots,  equal  to 

[15u 4 + l  + 8u07(3-u2)_+ (1 +u2)  3x~]  ] /8  (4.7) 

An investigation o f  their  signs shows that  the larger root  (which we will hencefor th  deno te  by o~) is 
always positive; the smaller  roo t  is e i ther  negative or  positive, but  it then does not  satisfy condit ions 
(4.6). The  root  o~ satisfies condit ions (4.6) for  any admissible values of  the paramete rs  u0 and y. 

Hence ,  Eq. (4.5) has the single solution Ol = o 1 which satisfies all the postula ted conditions. The  
following value of  o~ corresponds  to it 

, Glu 0 - ( U o / 2 - 7 ) ( I - u 2 )  2 
0 2 = O 2 - -  I + u02 (4.8)  

obta ined f rom the second equa t ion  of  (4.4). 
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Returning once again to the parameters o~ and 13, according to relations (4.2), we obtain four pairs 
of values of o~ and [3 corresponding to the pair of values ~1 and ~2 

cq, 2 = ( A + B ) I 2 ,  ~ I , 2 = ( A ~ B ) I 2  

o~3, 4 = (-A + B) / 2, 1~3,4 = (-A -Y- B) / 2 (4.9) 

A= * + 2 ~  2, B=  - 2 ~  2 

Suppose the value of y is fixed. Then relations (4.9), taking expressions (4.7) and (4.8) into account, 
specify curves in the (~, ]3) plane in parametric form (the parameter  is the quantity u0, which varies 
from -1 to 1), where the sufficient condition for stability of the periodic motion of the system considered 
breaks down. 

The form of these curves depends on the value of the parameter  y. Analysis shows that the case when 
0 < ~' < 1 and y > 1 will be qualitatively different. In Fig. 3(a-c) we show the cases 0 < y < 1, y = 1, 
y > 1, respectively. In all these cases curves (4.9) form a closed contour, shown in Fig. 3 by the continuous 
curve. The contour has vertices at points with coordinates (_+~/(2(2 - y)), ___~/(2(2 - y))) when y < 1 and 
(_+'](2(2y- 1)), _+~/(2(2y- 1)) when y 1> 1, when c~ = 13 (corresponding to u0 = 1), and also vertices at 
points with coordinates (+'](2(2 + y)), +~/(2(2 + y))), when ~ = -[3 (in this case u0 = -1).  

The dashed curve in Fig. 3 represents a curvilinear square with sides-parabolas (2.5), inside which, 
at each point (~, [3), there is one or three periodic motions of the system (depending on y), while outside 
there is only one such motion. When y > 1 the contour of curves (4.9) as a whole contains a curvilinear 
square and its boundary (Fig. 3c). When 0 < y < 1 each of curves (4.9) also lies outside the region 
occupied by this square, but, with one of the parabolas (2.5), there is associated a point which is a cuspidal 
point for the c u ~ e  (Fig. 3a); the coordinates of the cuspidal points are (_+(+ ~)/~12, +_ ~/(2)y) and 
(_+~(2)y, _+(1 + ~)N2) ,  and the value u0 = y of the parameter  u0 corresponds to these points. When 
y = 1 the cuspidal points of curves (4.9) merge in pairs and coincide with the vertices of the contour 
formed by these curves (Fig. 3b). 

Hence, the 2~-periodic motions of this system, which is stable in the linear approximation and corres- 
ponds to points (c~, [3) inside the curvilinear square with sides (2.5), are also stable for any values of y in 
the non-linear problem. The unique periodic motion for points outside this square, which is stable in 
the linear approximation, is also stable, with the exception, possibly, of points (cq [3) lying on curves (4.9). 

The conclusions reached regarding the stability of periodic motions of this system can be extended 
to the corresponding motions of a Lagrange top, close to regular precessions: for points (~, ~) inside 
a square with sides (2.5) they are either one stable motion of the top (depending on y) or three such 
motions, two of which are stable and one of which is unstable; outside the square there is a single motion 
which is stable for all permissible values of ~, 13 and y, with exception, perhaps, of points belonging to 
curves (4.9). 
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